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Abstract

A modified graphical–statistical method for shape factor estimation has been developed and used to estimate the permeability of a
perfusive particle as an example. The shape factor was evaluated by calculating the average cross-sectional area for diffusion and the
average flow path line length separately. According to this method, a perfusive particle with a sealing surface length ratio,Ls, of 0.04, i.e.
a contact length of the perfusive particle on the walls of the test cell tube to the perfusive particle diameter of 0.04, would have a shape
factor of 1.25πa. Then, the graphical–statistical method and the geometrical method were used to propose an expression to evaluate the
shape factor of any perfusive particle with a sealing surface length ratio ofLs and a radius ofa. Finally, the shape factor approach was
compared with the CFD numerical simulation approach of Pfeiffer et al. [AIChE J. 42 (1996) 932], and excellent agreement between the
two approaches has been demonstrated.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Chemical processes adopting perfusive particles as the
support for catalyst or adsorbent have been used signifi-
cantly in the last decade, especially perfusive chromatog-
raphy. The main feature of the perfusive particles is the
macro-interconnected pores, which allow solute to trans-
fer from the mobile phase to the stationary one by con-
vection in addition to the diffusion. Therefore, intraparticle
velocity become critical in mass transfer balance and can-
not be neglected. This additional transport mechanism has
been demonstrated experimentally to enhance the separa-
tion of biomolecules such as bovine serum albumin [2,3],
�-galactosidase [4] and proteins [5–7].

Intraparticle velocity has been calculated using Darcy’s
law [2,6,8], using the stream function developed by Neale
et al. [9], or by solving Brinkman’s equations in both the
perfusive particle and its surroundings in the bed [10]. In
all of these developed intraparticle velocity expressions, bed
permeability,Kb, and perfusive particle permeability,KP,
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are the major parameters. The bed permeability,Kb, can
be calculated through the traditional correlations. On the
other hand, the perfusive particle permeability,KP, is a new
parameter that appears only in perfusive systems. Therefore,
a good estimation of perfusive particle permeability,KP, is
an essential issue.

Several investigators have estimated perfusive particle
permeability by treating the perfusive particle as a bed of
micro-particles. Thus, the Carmen–Kozeny equation, as
shown in Eq. (1), can be adopted for estimating the perme-
ability of perfusive particle. In the Carmen–Kozeny equa-
tion, KP is the permeability of perfusive particle,dm is the
equivalent micro-particle diameter, andεP is the perfusive
particle porosity.

KP = ε3
Pd

2
m

150(1 − εP)2
(1)

The first measurement to the permeability of a single per-
fusive particle experimentally was reported by Pfeiffer et al.
[1]. First, an apparatus capable of measuring the flow in a
single perfusive particle at different pressure drops was de-
signed and the results were as shown in Fig. 1. Then, com-
mercial software to predict the flow in a perfusive particle
at different values of the permeability was used, as shown
in Fig. 2. Finally, by combining the experimental and the
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Nomenclature

a radius of perfusive particle
as sealing surface length
Aavg, Aeq average and equivalent cross-sectional

area, respectively
A′

kij average cross-sectional area of
block (ijk)

C constant
dm equivalent diameter of micro-spheres
i index of flow path line inz-plane
j index of flow path line inx-plane
k index of cross-sectional area for flow
Kb bed permeability value
KP particle permeability value
KPi particle interstitial (specific) permeability
L flow path length
Lavg, Leq average and equivalent diffusion path

length
L′

ijk average diffusion path length of
the block (ijk)

Ls sealing surface length ratio
m number of flow path lines in each

s x-plane
n number of cross-sectional area, i.e.

number of isobaric lines
p number of flow path lines in eachz-plane
P pressure
Q flow rate
Qij flow betweenLij , L(i+1)j , Li(j+1), and

L(i+1)(j+1)
Rs shape factor resistance= 1/S
S shape factor
S̄ equivalent shape factor
W weight function
x0 length of first segment of the flow

path lengthL1, i.e. L111

Greek letters
εP particle void fraction (particle porosity)
µ absolute viscosity

simulated results, the permeability of the perfusive particle
was predicted.

Using different pressure drops across the perfusive parti-
cle than the one specified in Fig. 2 or different nominal diam-
eters of the perfusive particle can be tolerated since Darcy’s
law is a linear relationship. Meanwhile, the change in par-
ticle geometry or other physical conditions such as particle
porosity,εP, will require to repeat the simulation prediction
in [1], thus limiting the benefits of this procedure. In this pa-
per the simulation step will be replaced with a new technique
based on the traditional shape factor concept in heat trans-
fer. This technique is simpler in general; especially a single
equation can be used to predict the value of the shape factor.

Shape factor is a parameter that has been used to esti-
mate different types of flows in a permeable (conductive)
medium. Shape factor can be obtained analytically [11,12],
graphically [13,14], geometrically, numerically, experimen-
tally [15], or by any combination of these methods [16].

Heat flow through a furnace wall [17] is the first ap-
plication, where shape factor concept is used. Since that
time, many researchers have spent a lot of time to investi-
gate this concept and its validity for many different shapes
[15,18–21]. Heat flow by conduction is the field that benefits
most from the shape factor technique, shape factor having
originated from the heat conduction problem. In addition,
followers have tried to apply the shape factor approach [17],
by using the same technique to different medium shapes.
And also, heat conduction flow is usually associated more
with heat flow in irregular shapes than any other type of flow.

Lacking of use of the shape factor technique in other heat
transfer fields does not necessarily mean that this concept
cannot be applied to other types of flow. The shape factor
technique has been used to estimate the permeability of soils
and clays [22,23], to estimate the flow rate of underground
water in the infiltration process [24], and to measure the
capacitance of several three-dimensional bodies located in
an electrical field [25].

Shape factor for any shape depends only on the geome-
try of that shape and not on the surrounding condition val-
ues. Therefore, its value will not change as the potential
drop value around it changes. Moreover, it can be used in
the regular transport equations by replacing the ratio of the
cross-sectional area to the diffusion length with the shape
factor.

In this paper, a modified graphical–statistical method
for evaluation of shape factor of three-dimensional bod-
ies will be presented. It is modified from the traditional
two-dimensional graphical method [13,14]. In addition, it
depends on averaging cross-sectional area as well as diffu-
sion path length; therefore, it is called graphical–statistical
method. This method was proven to give the value of the
shape factor of the shape under study by using electrical
network. As an example, this method was applied to the per-
fusive particle studied in Pfeiffer et al. [1], and it produced
excellent agreement with their result. Finally, a general cor-
relation was established for the shape factor for a spherical
perfusive particle that was inserted in a tube as in Pfeiffer
et al. [1]. This correlation would simplify the determination
of the permeability of a single perfusive particle.

2. Theory

Shape factor is used to estimate the steady flow in per-
meable (conductive) medium between two boundaries. Both
boundaries were subjected to constant potentials, but each
potential had a different value. Shape factor is mainly the
ratio between the average cross-sectional area perpendicular
to the flow to the average effective distance for flow travel. It
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Fig. 1. Data of Pfeiffer et al. [1] represented as flow rate vs. pressure drop.

is used in the flow equation as illustrated in Eq. (2), which is
simply Darcy’s law with consideration for irregular shapes.

Q = KP

µ
S(−�P), S = Aavg

Lavg
(2)

If an experiment can be performed to measure the flow rate,
Q, which passes through a perfusive particle at different
pressure drop values, as in Pfeiffer et al. [1], then the per-
meability of the perfusive particle can be obtained through
Eq. (3). Therefore, the shape factor,S, for the particle under
consideration must be evaluated.

KP = µ

S

Q

−�P
(3)

Fig. 2. Volumetric air flow rates as a function of particle permeability for
three particle diameters as determined by CFD model at 400 Pa pressure
drop (from [1]).

3. Derivation of a modified graphical–statistical
shape factor method

Consider any three-dimensional porous body subjected
to a pressure drop of�P. A flux network of n isobaric
lines (n cross-sectional areas) andmpflow path lines can be
constructed on it, as represented in Fig. 3A for thej-plane
parallel to the flow and Fig. 3B for thek-plane perpendicular
to the flow, whereLijk is the segment of flow path line
Lij located between cross-sectional areasAk andAk+1 and
Akij is the portion of cross-sectional areaAk surrounded
by flow path linesLij , Li(j+1), L(i+1)j , andL(i+1)(j+1).
The equivalent average cross-sectional area,Aeq, and the
equivalent average flow path length,Leq, can be estimated
by Eqs. (4) and (5), respectively.

Aeq = 1

n

n∑
k=1

Ak (4)

Leq = 1

mp

m∑
i=1

p∑
j=1

Lij (5)

Before beginning this derivation, there are two terms that
will be used, the average property and the equivalent average
property. For the same body, the latter value is a function of
m, p, andn values, while the other one is not. The value of
the equivalent average property will converge to the value
of the average property as the values ofm, p, andn increase;
i.e. very condense flux network.

According to the previous two terms, a new definition
for the shape factor arises called equivalent shape fac-
tor, S̄, which is the ratio between the equivalent average
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Fig. 3. (A) Plane of the flux network parallel to the flow with constant flow path lines,Lij , and isobaric cross-sectional areas,Ak . (B) Plane of the flux
network perpendicular to the flow.

cross-sectional area to the equivalent average flow path
length.

3.1. Shape factor

Let Rs be the shape resistance of the medium to the flow,
i.e. the reciprocal of the shape factor. If a resistance can rep-
resent each block in the flux network, thenRs for the whole
shape is the equivalent resistance of all of them. Therefore,
by representingRs as shown in the electrical network in
Fig. 4,Rs can be obtained as follows:

S = R−1
s =

m−1∑
i=1

p−1∑
j=1

[
n−1∑
k=1

Rs,ijk

]−1

, Rs,ijk =
L′

ijk

A′
kij

(6)

whereA′
kij andL′

ijk are the average cross-sectional area and
the average flow path length for the blockijk, respectively.

Eq. (6) is valid for any shape without any assumptions,
the only required information is the ratioL′

ijk/A
′
kij for the

entire blocks of the network. In practice, it is not easy to
find this ratio for many shapes. Therefore, some reasonable
assumptions must be specified to ease the handling of this
equation.

First assumption:select the isobaric lines so that the pres-
sure drop is the same between each of them.This assumption
states that the pressure drop between any two consecutive
cross-sectional areas,�Pk, is constant for allk.

S = R−1
s =

m−1∑
i=1

p−1∑
j=1

[
n−1∑
k=1

1

Cij

]−1

=
m−1∑
i=1

p−1∑
j=1

[
n − 1

Cij

]−1

=
m−1∑
i=1

p−1∑
j=1

[
Cij

n − 1

]
, Cij =

A′
kij

L′
ijk

(7)

Eq. (7) only requires obtaining the value of the constant,
Cij , between each four-flow path lines that surround each
Akij , i.e. Cij is constant betweenLi , L(i+1)j , Li(j+1), and
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Fig. 4. An electrical network that represents the resistance to the flow in
the flux network, whereS = R−1

s .

L(i+1)(j+1). So, this assumption simplifies Eq. (6). For fur-
ther simplification second assumption must be applied.

Second assumption:select the flow path lines, Lij , so that
the flow between each four-flow path lines is constant.This
assumption states thatQij , which is the flow betweenLi ,
L(i+1)j , Li(j+1), andL(i+1)(j+1), has a constant value for
all flow pathways (ij ’s). So, with the help of this assumption
besides Darcy’s law, Eq. (7) simplifies to

S =R−1
s =

m−1∑
i=1

p−1∑
j=1

Cij

n − 1
= (m − 1)(p − 1)

n − 1
C,

C =Cij ∀i, j (8)

So, by applying the previous two assumptions, the rela-
tion for shape factor (Eq. (6)) is reduced to the relation il-
lustrated in Eq. (8), whereC is a constant. This relation
is similar to what has been used in the graphical method
for shape factor estimation in two dimensions [13,14], but
the main difference between them is in the nature of the
constantC.

3.2. Equivalent shape factor and the relation with the
shape factor

Let us assign̄S as the ratio ofAeq, which satisfies that�Pk

is a constant, toLeq, which satisfies thatQij is a constant, i.e.
applying the previous two assumptions. By assuming that

the relation betweenA′
kij andL′

ijk , Eq. (6) is held between

Akij andLijk, thenS̄ can be obtained as follows:

S̄ = mp

n

∑n
k=1Ak∑m

i=1
∑p

j=1Lij
= mp

n

∑n
k=1

∑m−1
i=1

∑p−1
j=1Akij∑m

i=1
∑p

j=1

∑n−1
k=1Lijk

= mp

n

∑n
k=1

∑m−1
i=1

∑p−1
j=1Lijk∑m

i=1
∑p

j=1

∑n−1
k=1Lijk

C (9)

Now dividing Eq. (8) by Eq. (9) yields

S

S̄
= n

n − 1

m − 1

m

p − 1

p

∑m
i=1

∑p

j=1

∑n−1
k=1Lijk∑n

k=1
∑m−1

i=1
∑p−1

j=1Lijk

(10)

If a very condensed network has been selected, i.e.m � 1,
p � 1, n � 1 andLij ≈ 0, then Eq. (10) would state that
the value ofS̄ would reach the shape factor (S) value.

4. Perfusive particle with sealing surface: derivation of
the numerical procedure for the shape factor evaluation

4.1. Particle description

The perfusive particle in Pfeiffer et al. [1] can be de-
scribed as perfusive particle with sealing surface as illus-
trated in Fig. 5A, which is a spherical particle with a por-
tion removed to form a flat surface which will be in contact
with the walls of the permeability measuring device used in
Pfeiffer et al. [1]. The flat surface may result from cutting
the excess amount of porous material by maintaining the
particle physical and geometrical properties. The flat surface
is called sealing surface because there is no flow through
it. Fig. 5C represents the particle in ayz cross-sectional
diagram.

According to the experimental conditions of Pfeiffer et al.
[1], one hemispherical phase of the perfusive particle was
subjected to a constant pressure resulting from a column
of water, while the other hemispherical phase is exposed to
the atmosphere, i.e. constant pressure applied to this phase.
Therefore, the essential conditions, i.e. constant potential on
each surface but with different potential value at each one,
for applying the concept of shape factor were satisfied.

By applying the concepts of graphical method as illus-
trated in Holman [13] or Incropera and Dewitt [14] the
perfusive particle can be divided into eight portions sim-
ilar in shape and boundary conditions (Fig. 5B). Theyz
cross-sectional representation for the perfusive particle
portion is illustrated in Fig. 5D, where the relations in the
parentheses represent the dimension of the particle after
normalizing with the radiusa.

The shape factor of the portion of the particle in Fig. 5B
will be obtained because the graphical–statistical method
can be applied easily on it than using the whole perfusive
particle. After that it will be related to the shape factor of
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Fig. 5. (A) Perfusive particle with sealing surface under pressure drop of�P = P2 − P1. (B) Perfusive particle portion that will be considered in shape
factor evaluation. (C) Cross-sectional diagram for the perfusive particle with sealing surface (yz-plane). (D) Cross-sectional diagram for the perfusive
particle potion that will be considered in shape factor evaluation (yz-plane).

the whole particle by a factor of 2, as will be illustrated
later.

4.2. Flux network description

Before describing the flux network, the termLij , which
has been used in this paper to describe the flow path lineij ,
will be used also to describeLij length whenever appropri-
ate, i.e.L11 is the first flow path line, also,L11 = a/a = 1.

The distribution ofLij in the xz-plane will be discussed
first. For this plane the polar coordinate will be selected
instead of the rectangular one to simplify the network as
follows. If the centerline (y-axis) is selected asL11 then
increasing thei-index in the radial direction and thej-index
in the angular direction, then the physical projection of the
network at this plane will be as in Fig. 6A. Moreover, if the
nodal point in ther-direction is selected equal to the nodal
points in the angular direction(p = m), then as a property
of the sphere, the following relation is correct:

Li1 = Lij ∀j ⇒
p∑

j=1

Lij =
{
L11, i = 1
pLi1 = mLi1, i > 1

,

p = m (11)

This will reduce Eq. (9) for the equivalent shape factor to
the following:

S̄ = mp

n

∑n
k=1Ak∑m

i=1
∑p

j=1Lij
= m2

n

∑n
k=1Ak

L11 + ∑m
i=1mLi1

= m

n

∑n
k=1

∑m−1
i=1

∑p−1
j=1Akij

(L11/m) + ∑m
i=1Li1

(12)

Since polar coordinate has been used then the area between
the indexi and the indexi+1,Aki (Fig. 6B), can be evaluated,
so the following simplification to Eq. (12) can be performed:

S̄ = m

n

∑n
k=1

∑m−1
i=1 Aki

(L11/m) + ∑m
i=1Li1

, Aki =
p−1∑
j=1

Akij (13)

As concluded in Eq. (13), thej-index has been omitted and
we remain with thei-index and thek-index. For simplifica-
tion thej-index will be dropped from the notation from this
point in this example. Therefore,Lij will be Li andLijk will
beLik and similarly for the area.

For theyz-plane, the flux network for perfusive particle
with complete sphere shape,Ls = 0, can be easily predicted
as illustrated in Fig. 6C. Each cross-sectional area,Ak, is
considered portion of imaginary sphere surface which meet
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Fig. 6. (A) Flux network projection on, the perpendicular plane to the flow
(xz-plane) with meshing in polar coordinate for thei-index andj-index.
(B) The perpendicular plane to the flow (xz-plane) after dropping the
j-index. (C) The parallel plane to the flow (yz-plane),Ls = 0. (D) The
parallel plane to the flow (yz-plane),Ls �= 0.

with other cross-sectional areas at point O and is perpen-
dicular to the centerlineL1. The flow path lines,Li , are as-
sumed to be straight lines, where distance between them is
reduced as they approach the point O. Actually, the flow path
lines must be curved as they approachAn, but for practical
calculations it is assumed to be straight lines as an average
between the start point and the end point.

Meanwhile,yz-plane of the flux network for perfusive par-
ticle with sealing surface length ratio ofLs, Ls = as/a, not
equal to zero is illustrated in Fig. 6D. The cross-sectional
areaAk is considered as part of imaginary sphere surface.
These imaginary spheres are perpendicular to the centerline
L1 and they not necessarily meet at point O, as in com-
plete sphere, but they intersect the lineLs at a position where
the pressure drop in the perfusive particle is satisfied. The
flow path lines,Li , are assumed to be straight lines as in the
complete sphere(Ls = 0), where distance between them is
reduced as they approach lineLs.

4.3. Area relation (Ak)

The expression forAk as a function of the dimensionless
sealing surface lengthLs, is obtained as follows. Since we
deal with porous media and a straight line is assumed to
represent the flow path line, a uniform pressure drop can be
assumed within the perfusive particle,∂P/∂y is a constant.
Thus, then cross-sectional areas will divide each flow path
line to n − 1 equal segments, each of them equal toLi1,

Fig. 7. Diagram used to obtainAk relation in perfusive particle portion
with sealing surface ratio,Ls: (A) Ls = 0; (B) Ls �= 0.

in order to have constant pressure drop between any two
consecutive cross-sectional areas. For the special centerline
L1, the value ofL11 would be equal tox0 = (n − 1)−1.

For complete sphere, i.e. no sealing surface(Ls = 0),
Fig. 7A illustrates the relation between the areaAk and the
perfusive particle portion under consideration. In Fig. 7A,
R′ is the radius of the sphere of whichAk is a portion of its
surface.R′ is not fixed but is a function ofk, i.e. if k = n

thenR′ = L1, and if k = 1 thenR′ = ∞. The expression
for Ak for complete sphere(Ls = 0) can be obtained by
using simple geometric relations, which will conclude the
following relation forAk:

Ak = π

4

[
1 + (k − 1)2

(n − 1)2

]
= π

4
[(1 − W) + 2W ],

W = (k − 1)2

(n − 1)2
(14)

The cross-sectional areaA1 (k = 1) is an area of a quarter
of a circle with radius of magnitude equal to 1; therefore,A1
is equal toπ /4. On the other hand, the cross-sectional area
An (k = n) is the area of one-eighth of a sphere with ra-
dius of magnitude equal to 1; therefore,An is equal toπ /2.
The previous two cross-sectional areas are the two extremes
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for the value ofAk. So, the right-hand side of Eq. (14) pro-
poses, a weight function,W, which is used as follows:A1 is
multiplied by 1− W andAn is multiplied byW, then they
are summed up. This summation gives the left-hand side of
Eq. (14), whereW is equal to(k − 1)2/(n − 1)2, i.e. W is
equal to 0 atk = 1 andW is equal to 1 atk = n.

ForLs �= 0, A1, Ak, andAn can be obtained from Fig. 7B
using geometrical relations, whereY is the distance between
L1 andLs. Expression forAk will be

Ak =
∫ π/2

0

∫ θ ′

0
(R′)2 sinθ dθ dφ

= π

4
[Y 2 + [(k − 1)x0 − f ]2] (15)

As observed from Eq. (15), a relation betweenf andLs is
required to obtainAk expression as a function ofLs, k, and
n. As mentioned in the description ofAk in the flux network
description, the intersection point betweenAk andLs should
satisfy the pressure drop in the particle. Since, a constant
pressure drop is assumed in the particle,∂P/∂y is a constant,
and sinceAk is selected in a way to have constant pressure
drop between each consecutive cross-sectional area, thenLs
will be divided inton − 1 equal segments. Therefore, the
position of the intersection point betweenAk andLs will be
(k − 1)Ls/(n− 1) far from the intersection point ofLs and
A1, i.e. f = (k − 1)Ls/(n − 1). So, by substitutingx0 =
(n − 1)−1, Y 2 = 1 − L2

s, andf = (k − 1)Ls/(n − 1) in
Eq. (15) and rearranging, Eq. (16) will be obtained (detailed
derivation as shown in Appendix A).

Ak = π

4
[(1 − W)(1 − L2

s) + 2W(1 − Ls)],

W = (k − 1)2

(n − 1)2
(16)

As observed, Eq. (16) has the similar general formula used
in Eq. (14), i.e.Ak = [(1 − W)A1 + 2WAn].

4.4. Flow path length (Li)

The expression forLi is derived using Fig. 8, whereYi
is the distance betweenL1 and Li and yi is the distance

Fig. 8. Schematic diagram for the perfusive particle portion with sealing
surface ratio ofLs that was used to obtain the relation forLi .

betweenLi andLi+1. Li can be obtained easily by using
the triangle properties (Eq. (17)).Y is the sum of allyk ’s
betweenL1 andLi (Eq. (18)).

L2
i = 1 − Y 2

i (17)

Yi =
i−1∑
v=1

yv (18)

So, the problem is no longer findingLi ’s but instead finding
yi ’s. The relation between differentyi ’s can be obtained us-
ing the assumption that the flowQi is constant between any
two consecutive flow path lines, thus resulting the relation
in Eq. (19). Since the pressure drop in the perfusive particle
is assumed to be constant and hence the distance between
the Ak ’s is taken to be constant, i.e.Li = (n − 1)Li1, and
sincex0 = (n − 1)−1 thenLi1 = Lix0. Also, sinceA11 is
the area of a quarter of a circle (Fig. 6B) with radius ofy1,
then the expression forA1i would be as in Eq. (20).

A1i = Li1

L11
A11 = Li1

x0
A11 (19)

A1i = 1
4πy

2
1(1 − Y 2

i )
0.5 (20)

On the other hand,A1i is the area that represents the differ-
ence between two other quarter circle areas as illustrated in
Fig. 6B and represented by Eq. (21). By equating Eqs. (20)
and (21), an expression foryi will be obtained (Eq. (22)).
Therefore,Li can be obtained through Eqs. (17), (18) and
(22), but the only required information to initiate the calcu-
lation procedure isy1, which should be as small as possible
to validate all the assumptions.

A1i = 1
4π [(Yi + yi)

2 − Y 2
i ] (21)

yi = −Yi +
√
Y 2
i + y2

1(1 − Y 2
i )

0.5 (22)

4.5. Summary

Since all the previous relations forAk andLi are based on
dimensionless length, then the equivalent shape factor value
for the perfusive particle portion,̄Sportion, is obtained as in
Eq. (23). Note that, the value of the equivalent shape factor,
S̄portion, will approach the value of the shape factor of the
perfusive particle portion,Sportion, asm andn increased, i.e.
x0 andy1 decreased.

S̄portion

a
= m

n

∑n
j=1Aj∑m
i=1Li

,

Ak = π

4
[(1 − W)(1 − L2

s) + 2W(1 − Ls)],

W = (k − 1)2

(n − 1)2
, n − 1 = 1

x0
,

L2
i = 1 − Y 2,

Y =
i−1∑
v=1

yv, yv = −Y +
√
Y 2 + y2

1(1 − Y 2)0.5 (23)
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Fig. 9. Results of simulation for perfusive particle withLs = 0.04.
Aeq,portion andLeq,portion are the equivalent average area and the equivalent
average length of the perfusive particle portion, respectively.

In order to obtain the value of the equivalent shape factor of
the whole particle, the equivalent shape factor in Eq. (23)
must be multiplied by 2. Because, in the whole particle, the
flow will pass a cross-sectional area four times greater than
the cross-sectional area of the derived portion, and will flow
twice the length of the portion, as shown in Fig. 5. Therefore,
Sparticle = 2Sportion.

For example, the equivalent shape factor value of a per-
fusive particle,S̄particle, with Ls = 0.04 has been simulated
from x0 = 0.15 to x0 = 0.001 usingy1 = x0. The results
are shown in Fig. 9, where the division of 4Aeq,portion/π over
2Leq,portion yields 2S̄portion/(πa), which is S̄particle/(πa). The
results (Fig. 9) show that asx0 decreases, the equivalent
shape factor value,̄Sparticle, changes until it becomes inde-
pendent ofx0 value, where its value becomes the value of
the shape factor,S. This observation will validate our as-
sumptions related to the convergence of the equivalent shape
factor.

The previous derived technique (Eq. (23)) requires the
simulation of the equivalent shape factor, until its value be-
comes independent ofx0 andy1, i.e. S̄particle = Sparticle. This
step may require a long simulation time. Therefore, calcu-
latingSparticlevalue as function ofLs anda in terms of single
or multiequations will be very helpful in many applications.
Therefore, the value ofSparticle obtained through Eq. (23),
will be used as the experimental values for the next section
of the paper.

5. Perfusive particle with sealing surface: derivation
of the mathematical expression for the shape factor

Providing a mathematical expression to calculate the
shape factor is more practical and beneficial for perme-
ability calculation than the one from simulation or graphs.
Therefore, developing a simple mathematical expression

Fig. 10. Shape factor of perfusive particle with sealing surface length
ratio of Ls computed by different methods developed in the paper.

for shape factor of perfusive particle with sealing surface of
length ratio ofLs is the objective of this section of the paper.

In developing the mathematical expression, the geomet-
rical method [16], was used. The shape factor of the per-
fusive particle portion illustrated in Fig. 5B was estimated as
follows.

Considering the shape factor, if the average area is se-
lected to be the square root of the product of the area at
the center of the particle,A1, by surface area,An (Eq. (24)).
Then to obtain the average flow path length, different types
of averaging methods were tried, and it was found that the
arithmetic average betweenLs andL1 = 1 (Eq. (25)) gives
the best shape factor values, as compared with the simulated
ones (Eq. (23)) as shown in Fig. 10.

Aavg =
√
A1An =

√[
1
4π(1 − L2

s)
] [

1
2π(1 − Ls)

]
(24)

Lavg = 1
2(1 + Ls) (25)

Sportion = πa√
2

[(1 − L2
s)(1 − Ls)]0.5

1 + Ls
(26)

As observed from Fig. 10, the proposed expression for the
shape factor converges to the simulated values as the value
of Ls reaches 1. This behavior of the shape factor expres-
sion suggests a couple of adjustments to the power and the
coefficient values in Eq. (26).

By using the nonlinear regression package in STA-
TGRAPHIC® program, the proposed expression fits the
simulated shape factor values, Eq. (23) with high values
of m and n, perfectly if Eq. (27) is used. For the whole
particle, the shape factor expression would be Eq. (28).

Sportion = πa

1.5

[(1 − L2
s)(1 − Ls)]0.48153

1 + Ls
(27)

Sparticle = 2Sportion = 4πa

3

[(1−L2
s)(1−Ls)]0.48153

1+Ls
(28)
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Eq. (28) is valid for any perfusive particle with radius equal
to a and sealing surface length ratio ofLs, resulting from
removing the excess material from the original perfusive
particle, where it experiences a constant pressure drop inside
the particle and is subjected to constant pressure value at
each boundary, but they differ in their values, as illustrated
in Fig. 5A.

6. Comparison of experimental permeability of
perfusive particle with the results from shape factor

Air at 26◦C with an absolute viscosity,µ, of 1.86 ×
10−5 Pa s was used in Pfeiffer et al. [1] to measure the vol-
umetric flow rate through a perfusive particle with diame-
ter equal to 50�m at different pressure drops, as shown in
Fig. 1. According to their CFD simulation results, the inter-
stitial permeability of the perfusive particle,KPi = KP/εP,
was equal to 7.63 × 10−15 m2. Since the reported poros-
ity of the perfusive particle,εP, was equal to 0.5, the per-
meability of the perfusive particle used will be equal to
3.815× 10−15 m2.

According to their experimental conditions, Darcy’s law
is the appropriate relation to describe the flow inside the
perfusive particle. According to Darcy’s law, Eq. (3) can be
used to obtain the permeability, where the ratioQ/(−�P)
is the slope that would be obtained experimentally. In the
considered example, the obtained slope from Fig. 1 is equal
to 1.98× 10−14 m3/Pa. A perfusive particle with 50�m in
diameter and sealing surface of length ratio 0.04(Ls =
0.04) was used in those experiments. In the CFD simulation,
the particle was represented by easily removing the excess
material to formLs. So Eq. (28) can be used to estimate
the shape factor, which yield a shape factor value,S, of
31.428π × 10−6 m. Applying Eq. (3), a value of 3.73 ×
10−15 m2 for the permeability of the perfusive particle is
obtained, which yields an interstitial permeability of 7.46×
10−15 m2 for a perfusive particle with porosity of 0.5. These
results are in a good agreement with Pfeiffer et al. [1], which
is based on CFD simulation.

Therefore, using the shape factor technique allows per-
meability calculation without the use of the complicated
CFD simulation. Moreover, the shape factor technique is
not limited to a certain range of particle diameter, poros-
ity, and/or sealing surface length ratio (Ls), i.e. Fig. 2,
while those parameters were limiting factors in Pfeiffer
et al. [1].

7. Summary and conclusion

A modified graphical–statistical method to estimate the
shape factor of three-dimensional bodies has been pre-
sented and proved by using electrical network approach.
This method can be used to calculate the shape factor
of any body subjected to constant potential difference

between its faces regardless of the potential type, i.e.
it can be used with voltage difference, pressure differ-
ence, temperature difference, concentration difference, etc.
This method requires a suitable way to calculate the area
perpendicular to the flow and the flow path line length
separately.

As an example, the permeability of a perfusive particle has
been measured successfully by using the presented shape
factor technique. The shape factor for a perfusive particle
with sealing surface length ratio ofLs has been obtained and
correlated (Eq. (28)) using the modified graphical–statistical
method. This technique has proved to be simple and prac-
tical, in comparison with other published techniques. Only
a few experiments are required to obtain the flow through a
perfusive particle as the pressure drop across the perfusive
particle changes, i.e.Q versus−�P. From the obtained data
and the physical conditions of the perfusive particle through
these experiments, Eqs. (3) and (28) can be used to ob-
tain the permeability of the perfusive particle. This approach
shows excellent agreement with the numerical CFD simula-
tion approach of Pfeiffer et al. [1]. Moreover, the proposed
shape factor approach (Eqs. (3) and (28)) for evaluating per-
fusive particle permeability is not limited to a certain values
of the particle radius, porosity, and/or values of the sealing
surface length ratio,Ls.

Appendix A

The area,Ak, in relation to the sealing surface length
ration, Ls (Eq. (16)) is obtained by using Fig. 7B as fol-
lows. Area,Ak, can be calculated using Eq. (A.1). Expres-
sions for R′ and cosθ ′ as functions ofLs, k, and n are
required.

Ak =
∫ π/2

0

∫ θ ′

0
(R′)2 sinθ ′ dθ dφ = π

2
(R′)2(1 − cosθ ′)

(A.1)

By applying the Pythagorean theorem, the following expres-
sion that relatesR′ to f, k, Y, and x0 will be obtained as
illustrated below:

(R′)2 = [R′ − (k − 1)x0 + f ]2 + Y 2

= (R′)2 − 2R′[(j − 1)x0 − f ]

+[(j − 1)x0 − f ]2 + Y 2 (A.2)

therefore,

R′ = [(k − 1)x0 − f ]2 + Y 2

2[(k − 1)x0 − f ]
(A.3)

For cosθ ′, the trigonometric relation implies that

cosθ ′ = R′ − (k − 1)x0 + f

R′ = 1 − (k − 1)x0 − f

R′ (A.4)
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Now substituting (A.4) in Eq. (A.1) yields

Ak = π

2
(R′)2(1 − cosθ ′)

= π

2
(R′)2

[
1 −

(
1 − (k − 1)x0 − f

R′

)]

= π

2
(R′)2

(
(k − 1)x0 − f

R′

)

= π

2
R′[(k − 1)x0 − f ] (A.5)

Now substituting forR′ from Eq. (A.3) in Eq. (A.5) yields

Ak = π

2

[
[(k − 1)x0 − f ]2 + Y 2

2[(k − 1)x0 − f ]

]
[(k − 1)x0 − f ]

= π

4
[[(k − 1)x0 − f ]2 + Y 2] (A.6)

Now substitutingx0 = (n − 1)−1, f = (k − 1)Ls/(n − 1),
andY 2 = 1 − L2

s yields

Ak = π

4
[[(k − 1)x0 − f ]2 + Y 2]

= π

4

[[
k − 1

n − 1
− (k − 1)Ls

n − 1

]2

+ 1 − L2
s

]

= π

4

[
(k − 1)2

(n − 1)2
[1 − Ls]

2 + 1 − L2
s

]

= π

4

[
W [1 − Ls]

2 + 1 − L2
s

]
,

W = (k − 1)2

(n − 1)2
(A.7)

Rearranging Eq. (A.7) as follows will yield Eq. (16).

Ak = 1
4π [W [1 − Ls]

2 + 1 − L2
s]

= 1
4π [W(1 − 2Ls + L2

s) + 1 − L2
s]

= 1
4π [W − 2WLs + WL2

s + 1 − L2
s]

= 1
4π [W − 2WLs + WL2

s + 1 − L2
s + (W − W)]

= 1
4π [(2W − 2WLs) + (WL2

s − W) + (1 − L2
s)]

= 1
4π [2W(1 − Ls) − W(1 − L2

s) + (1 − L2
s)]

= 1
4π [2W(1 − Ls) + (1 − W)(1 − L2

s)] (A.8)
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